A ferroelectric atmospheric pressure plasma source has been characterized. An RF electric field, with a frequency between 190 and 250 kHz, is employed to create plasma on the surface of a ferroelectric disk at atmospheric pressure. Average power consumption was measured, and images of plasma formation during an RF cycle have been collected. Excited neutrals from the ferroelectric and electrode, along with component species of the background gas, have been identified in optical emission spectra. Additionally, the electron temperature has been found to be ∼2.3 eV from atomic Boltzmann plots of neutral Ag I lines. Breakdown voltage and heavy-particle temperature are also presented. Additionally, the experiments indicate that piezoelectric resonance effects reduced the required applied voltage to induce breakdown.