Unbiased planar microwave circulators were fabricated by electrodeposition of NiFe nanowires into porous alumina templates. Microwave properties of the devices are seen to depend drastically on the height of the nanowires and the newly developed devices exhibit improved features, compared to existing nanowire-based designs. Thanks to the high anisotropy of the nanowires, zerofield circulation modes may be observed in a frequency range from 10 to 30 GHz, with isolation as large as 30 dB, as well as low insertion losses -5 dB, making it compatible with industrial needs for device applications. Abstract Unbiased planar microwave circulators were fabricated by electrodeposition of NiFe nanowires into porous alumina templates. Microwave properties of the devices are seen to depend drastically on the height of the nanowires and the newly developed devices exhibit improved features, compared to existing nanowire-based designs. Thanks to the high anisotropy of the nanowires, zero-field circulation modes may be observed in a frequency range from 10 to 30 GHz, with isolation as large as 30 dB, as well as low insertion losses −5 dB, making it compatible with industrial needs for device applications.