Aims
Hypoxic–ischemic brain injury (HIBI) often results in cognitive impairments. Herein, we investigated the roles of ferroptosis in HIBI and the underlying signaling pathways.
Methods
Ferrostatin‐1 (Fer‐1) or resveratrol (Res) treatments were administered intracerebroventricularly 30 min before HIBI in 7‐day‐old rats. Glutathione peroxidase 4 (GPx4) expression, malondialdehyde (MDA) concentration, iron content, mitochondrial morphology, and the expression of silent information regulator factor 2‐related enzyme 1 (SIRT1) and nuclear factor erythroid‐2‐related factor 2 (Nrf2) were measured after HIBI. Additionally, the weight ratio of left/right hemisphere, brain morphology, Nissl staining, and the Morris water maze test were conducted to estimate brain damage.
Results
At 24‐h post‐HIBI, GPx4 expression was decreased, and MDA concentration and iron content were increased in the hippocampus. HIBI led to mitochondrial atrophy, brain atrophy/damage, and resultant learning and memory impairments, which were alleviated by Fer‐1‐mediated inhibition of ferroptosis. Furthermore, Res‐mediated SIRT1 upregulation increased Nrf2 and GPx4 expression, thereby attenuating ferroptosis, reducing brain atrophy/damage, and improving learning and memory abilities.
Conclusion
The results demonstrated that during HIBI, ferroptosis occurs via the SIRT1/Nrf2/GPx4 signaling pathway, suggesting it as a potential therapeutic target for inhibiting ferroptosis and ameliorating HIBI‐induced cognitive impairments.