In modular structures, inaccuracies of the modules superimpose over the entire structure. Depending on the placement of the modules, these inaccuracies have (different) effects on stresses and total deformations. Especially for structures with many individual modules, it is favorable to place them according to their influence. To cover structural diversity, column-, beam-, and wall-like modular structures made from plane modules are investigated. In numerical simulation, geometric inaccuracies are applied via an equivalent temperature approach, which allows almost arbitrary nodal deviations of the modules. With the elementary effects method, the sensitivities of the modules’ inaccuracies regarding their structural impact can be determined with minimal computational effort. On a predefined control node, the overall structural inaccuracies are examined in a simplified manner. Column-like structures experience higher deformations due to inclination than beam-like or wall-like structures. For column-like, the bottommost modules are decisive for the overall inaccuracy, as they contribute significantly to the inclination. By contrast, modules at the supports are identified as particularly sensitive for beam- and wall-like structures. Controlling module placement towards their mean absolute influence, the deformation at the control node is mathematically reduced by at least 43% compared to random placement. Thereby, even modules that do not comply with tolerance requirements for structural components can be used in areas of low influence for a sustainable and low-waste design.