FERONIA and 16 closely related proteins form a distinct clade within the Arabidopsis (Arabidopsis thaliana) superfamily of receptor-like kinases (RLKs), transmembrane proteins with an extracellular domain for signal perception and a cytoplasmic domain that phosphorylates target molecules and induces cellular responses to incoming signals. Several members of this family, such as THESEUS1 and ANXUR1,2, are known to play distinct roles in growth and reproduction; FERONIA is unique in being critically involved in both plant growth and reproduction. The FERONIA family of proteins from Arabidopsis is distinguished from other RLKs by having extracellular protein motifs that share homology with malectin, an animal protein with the capacity to bind dimeric and oligomeric Glc. The possibility that these malectin-like motifs might interact with carbohydrates has generated widespread speculations that these receptor kinases could act as cell-wall sensors, communicating perturbations at the frontline of cell-cell and plantenvironment interaction to the cytoplasm to induce responses. Here, we discuss emerging understanding of the functional roles and signaling mechanisms of FERONIA and its related proteins. We also highlight pressing questions, as well as the functional potential of the broader malectin-like domain-containing RLK family that exists across the plant kingdom. We believe FERONIA and her pals provide a rich ground for research with many emerging opportunities for uncovering novel insights into how plants strive for growth and survival.FERONIA/SIRĂNE was first identified genetically more than ten years ago as a key regulator of female fertility in Arabidopsis (Rotman et al., 2003;Huck et al., 2003). It was later determined to be a receptor kinase (Escobar-Restrepo et al., 2007) and one of 17 closely related receptor-like kinases (RLKs) in Arabidopsis ( FERONIA controls growth and female fertility, mediates hormone-and pathogen-induced responses, and is required for a normal cell wall.FERONIA is a receptor for RALF1, a peptide regulatory factor, which affects phosphorylation of FERONIA and the key cell growth regulator H 1 -ATPase.FERONIA-related THESEUS1 suppresses growth in cellulosedeficient mutants, suggesting a role as surveyor of wall conditions.FERONIA homologs ANXUR1 and ANXUR2 ensure pollen tube integrity and male fertility.FERONIA, ANXUR1, and ANXUR2 signaling collectively involves a GPI-AP, a MLO protein, the RHO GTPase switch, NADPH oxidases, and a receptor-like cytoplasmic kinase; ROS and Ca 21 are key elements in their functions.