Sugar beet fibre (fibrex) is an abundant side-stream from the sugar refining industry. A self-produced laccase from Funalia trogii (LccFtr) (0.05 U/µg FA) successfully cross-linked fibrex to an edible gel. Dynamic oscillation measurements of the 10% fibrex gels showed a storage modulus of 5.52 kPa and loss factors ≤ 0.36 in the range from 20 to 80 Hz. Comparing storage stability of sweetened 10% fibrex gels with sweetened commercial 6% gelatin gels (10% and 30% d-sucrose) indicated a constant storage modulus and loss factors ≤ 0.7 during four weeks of storage in fibrex gels. Loss factors of sweetened gelatin gels were ≤0.2, and their storage modulus decreased from 9 to 7 kPa after adding d-sucrose and remained steady for four weeks of storage. Fibrex gel characteristics, including high water holding capacity, swelling ratio in saliva, and heat resistance are attributed to a covalently cross-linked network. Vanillin, as a mediator, and citrus pectin did not enhance covalent cross-links and elastic properties of the fibrex gels. Thus, laccase as an oxidative agent provided gels with a solid and stable texture. Fibrex gels may find uses in pharmaceutical and other industrial applications, which require a heat-resistant gel that forms easily at room temperature. They also represent an ethical alternative for manufacturing vegan, halal, and kosher food.