This review acknowledges the recent and dramatic advancement in the field of hemochromatosis and highlights the surprising analogies with a prototypic endocrine disease, diabetes. The term hemochromatosis should refer to a unique clinicopathologic subset of ironoverload syndromes that currently includes the disorder related to the C282Y homozygote mutation of the hemochromatosis protein HFE (by far the most common form of hemochromatosis) and the rare disorders more recently attributed to the loss of transferrin receptor 2, HAMP (hepcidin antimicrobial peptide), or hemojuvelin or to certain ferroportin mutations. The defining characteristic of this subset is failure to prevent unneeded iron from entering the circulatory pool as a result of genetic changes compromising the synthesis or activity of hepcidin, the iron hormone. Like diabetes, hemochromatosis results from the complex, nonlinear interaction between genetic and acquired factors. Depending on the underlying mutation, the coinheritance of modifier genes, the presence of nongenetic hepcidin inhibitors, and other host-related factors, the clinical manifestation may vary from simple biochemical abnormalities to severe multiorgan disease. The recognition of the endocrine nature of hemochromatosis suggests intriguing possibilities for new and more effective approaches to diagnosis and treatment. (HEPATOLOGY 2007;46:1291-1301