5-Hydroxymethylcytosine (5hmC), a distinct epigenetic marker that plays a role in DNA active demethylation, has been reported to be important for embryonic development and may respond to environmental exposure. No studies have evaluated the association between DNA hydroxymethylation and the risk for fetal neural tube defects (NTDs), with consideration of prenatal exposure to polycyclic aromatic hydrocarbons (PAHs), a risk factor for NTDs. We measured the global levels of 5hmC% in neural tissue from 92 terminated NTD cases and 33 terminated non-malformed fetuses. A lower level of 5hmC% was found in the NTD cases (median [interquartile range]: 0.25 [0.12-0.39]) compared to the controls (0.45 [0.19-1.00]). After adjusting for periconceptional folate supplementation, risk for NTDs increased with decreasing tertiles of 5hmC% (odds ratio: 7.89, 95% confidence interval: 2.32, 26.86, for the lowest tertile relative to the top tertile; p for trend = 0.002). Linear regression revealed that concentrations of highmolecular-weight PAHs (H_PAHs) in fetal liver tissue were negatively associated with log2transformed 5hmC%. Superoxide dismutase activity and 5hmC% were positively correlated in fetal neural tissue (r s = 0.64; p < 0.05). A mouse whole-embryo culture model was used for further validation. Decreased levels of 5hmC% and increased levels of reactive oxygen species were found in mouse embryos treated with BaP, a well-studied PAH. Taken together, levels of 5hmC% in fetal neural tissue were inversely associated with the risk for NTDs, and this association may be related to oxidative stress induced by exposure to PAHs.