1997
DOI: 10.1109/10.553712
|View full text |Cite
|
Sign up to set email alerts
|

Fetal ECG extraction from single-channel maternal ECG using singular value decomposition

Abstract: The extraction of fetal electrocardiogram (ECG) from the composite maternal ECG signal obtained from the abdominal lead is discussed. The proposed method employs singular value decomposition (SVD) and analysis based on the singular value ratio (SVR) spectrum. The maternal ECG (M-ECG) and the fetal ECG (F-ECG) components are identified in terms of the SV-decomposed modes of the appropriately configured data matrices, and elimination of the M-ECG and determination of F-ECG are achieved through selective separati… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
120
0
3

Year Published

2008
2008
2023
2023

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 282 publications
(123 citation statements)
references
References 18 publications
0
120
0
3
Order By: Relevance
“…12 To quantify the degree of periodicity in S we defined a new Periodicity Index (PI) based on the power levels of its PC and RC components in the time-domain, measured by the standard deviation of these components around their mean values. The PI was calculated as follows: (1) Thus, for a purely periodic signal StD (RC) = 0 and PI=1.…”
Section: Singular Value Decomposition and Periodicitymentioning
confidence: 99%
See 1 more Smart Citation
“…12 To quantify the degree of periodicity in S we defined a new Periodicity Index (PI) based on the power levels of its PC and RC components in the time-domain, measured by the standard deviation of these components around their mean values. The PI was calculated as follows: (1) Thus, for a purely periodic signal StD (RC) = 0 and PI=1.…”
Section: Singular Value Decomposition and Periodicitymentioning
confidence: 99%
“…Thus, the aim of this study was to investigate how the spatio-temporal characteristics of a cardiac fibrillation source that determine the DF of a local signal also contribute to the fractionation of that signal. Using the well established singular value decomposition (SVD) method 12 we analyzed numerical simulations and optical mapping data to test the hypothesis that the meandering pattern of a reentrant source that results in spatio-temporal instability and wave fractionation, is reflected in the power spectrum of local activity elsewhere in its surroundings and therefore may be used to trace the core of the source.…”
Section: Introductionmentioning
confidence: 99%
“…산모의 복부에서 측정한 ECG 신호를 이용 태아의 ECG를 추출하는 신호 처리 방법에 대한 여러 연구가 수행되어 왔다 [3][4][5][6][7][8][9][10][11][12][13][14][15][16].…”
Section: 서 론unclassified
“…用。如在轴承振动信号 [7][8] 、语音信号 [9] 、电荷放电 信号 [10] 等不同性质信号的消噪方面,这种矩阵形式 都可以取得相当好的消噪效果。本文拟不再探讨 SVD 的消噪问题,而是提出利用 SVD 实现信号中 不同频率的分离, 这与通常的 SVD 消噪应用完全不 同,因此不能再采用 Hankel 矩阵。为达到信号分离 的目的,我们采用另一种矩阵形式:对于一个待处 理信号,将信号均分成多段,利用每段形成矩阵的 行向量。这种矩阵在信号处理中也有一定的应用, 如 KANJILAL 等 [11][12] 利用这种矩阵通过奇异值比 谱来检测信号的周期性,并从复合母体心电信号中 提取胎儿心电信息, 再如 CONG 等 [13] 将 SVD 用于信号处理时首先必须利用信号构 造合适的矩阵 A。采用 Hankel 矩阵时可以消除信号 中的噪声 [7][8][9][10] ,但是我们的目的是实现信号的分离, 因此必须另外构造矩阵。对于一个数字信号序列 X=(x(1),x(2), … ,x(N)),取两个正整数 m 和 n, 对此序列按每次 n 个点连续截取 m 段, 以这 m 段构 造矩阵 A 如下 (1) (2) ( ) ( 1) ( 2) …”
unclassified
“…) 尽管这种矩阵在信号处理和故障诊断中已有一 定的应用 [11][12][13] ,但是简单地采用这种矩阵并不能实 T 1 2 1 1 2 1 2 1 2 T 1 2 2 1 2 1 2 , , , , , , , [7][8][9][10] , 此外,也可采用小波变换方法来消除噪声 [18] 。 (2) 为了使变结构 SVD 算法获得良好的频率分 离效果,必须对信号进行整周期采样,这是由算法 的信号分离机理决定的。…”
unclassified