In the present study we evaluated the effects of chronic exposure to sounds at 22 kHz during pregnancy on the central serotonergic and behavioral parameters in Wistar rat dams after the suckling period and on their male rat offspring. In addition, we also assessed the effects of an acute 22 kHz sound, associated with the chronic intrauterine exposure, on the emotional responses of adult offspring. The primary hypothesis was that experiencing 22 kHz stimuli during an early stage of development would interfere with brain serotonergic parameters and, later, with the adult rat's defensive responses. The corollary question was whether a 22 kHz sound exposure would differentially affect inhibitory avoidance and escape responses and central serotonergic parameters. Female rats were divided into four groups: non-pregnant control; non-pregnant chronic exposure; pregnant control; and pregnant chronic exposure. Male offspring were divided into four groups: chronic intrauterine sound exposure; acute sound exposure in adulthood; chronic intrauterine exposure with acute exposure in adulthood; and no exposure. Chronic sound exposure af-* Corresponding author. P. da Silva Oliveira et al. 26 fected inhibitory avoidance and serotonergic parameters in female rats. For offspring, there was an interaction between chronic and acute sound exposure effects on inhibitory avoidance response but not on escape response. There were significant effects of chronic intrauterine exposure on serotonin turnover in the hippocampus and PFC of females. For offspring, the turnover was increased by chronic exposure only in PFC, and in amygdala it was increased by acute exposure. These results illuminate the potential of an early acoustic sound exposure for causing central serotonergic and emotional behavioral changes that can persist into later periods of life.