The purpose of this study was to investigate the effects of the recombinant human erythropoietin (rhEPO) on proliferative and multi-differentiation potential of the bone marrow-derived mesenchymal stem cells (MSCs). The MSCs were isolated primarily from bone marrow of adult rat and purified at increasing passage. A purified population of MSCs can be obtained about 2 weeks after the initiation of culture. After three passages (P3-MSCs), bone marrow-derived adherent cells were identified, then different concentrations of rhEPO (0.1, 1, 5, 10, 100 U/ml) was added into the Passage-3 cells which had been identified. The expression of the surface markers in adherent cells was detected by the flow cytometry. The mRNA levels of transcription factors OCT4, SOX2, Nanog and TERT were measured by reverse transcription-polymerase chain reaction (RT-PCR). The results showed that CD29 and CD90 were positive in MSCs, but not CD33, CD44 and CD45, and the cells could differentiate into multiple lineages such as osteocytes and adipocytes. The expression of OCT4, SOX2, TERT, Nanog mRNA were up-regulated by the treatment of EPO. The effect of EPO was the most obvious when its concentration was 5U/mL after 12h. we conclude that MSCs can not only perserve characteristics of stem cells but also maintain its multi-lineage differentiation potential after appropriate treatment of EPO.