In this review, we summarize how an increasingly stressed and aging placenta contributes to the maternal clinical signs of preeclampsia, a potentially lethal pregnancy complication. The pathophysiology of preeclampsia has been conceptualized in the two‐stage model. Originally, highlighting the importance of poor placentation for early‐onset preeclampsia, the revised two‐stage model explains late‐onset preeclampsia as well, which is often preceded by normal placentation. We discuss how cellular senescence in the placenta may fit with the framework of the revised two‐stage model of preeclampsia pathophysiology and summarize potential cellular and molecular mechanisms, including effects on placental and maternal endothelial function. Cellular senescence may occur in response to inflammatory processes and oxidative, mitochondrial, or endoplasmic reticulum stress and chronic stress induce accelerated, premature placental senescence. In preeclampsia, both circulating and tissue‐based senescence markers are present. We suggest that aspirin prophylaxis, commonly recommended from the first trimester onward for women at risk of preeclampsia, may affect placentation and possibly mechanisms of placental senescence, thus attenuating the risk of preeclampsia developing clinically. We propose that biomarkers of placental dysfunction and senescence may contribute to altered preventive strategies, including discontinuation of aspirin at week 24–28 depending on placenta‐associated biomarker risk stratification.