Myelomeningocele (MMC) is a devastating anomaly with lifelong disability and morbidity. This is the first nonlethal disease as an indication of possible fetal surgery, and currently is the most common disease having undergone open fetal surgery. Although fetal surgical repair alone has been partially improving postnatal long-term clinical outcome, additional innovative strategy to be coupled with should be further investigated. In this regard, we studied the significance of tissue engineering technology as a means of provoking synergistic regeneration of the spinal cord that has been injured due to the associated MMC by the time of fetal anatomical repair. The aim of this report is to evaluate therapeutic feasibility of prenatal direct coverage of the MMC using an adherent sheet-like cluster of cultured myoblasts, the cell sheet. In our study using SD rat as a retinoic-acid-induced model of fetal MMC, a piece of the sheet was directly attached onto the surface of the MMC lesion following anesthesia, laparotomy and hysterotomy. As a result, we could reveal that the cell sheet could histologically seal up the lesion if it was properly kept stuck 4, 6 and 24 hours in utero. In conclusion, the cell sheet, as a part of therapeutic strategy, is likely to work for improving the outcome of correcting fetal MMC surgically.