2014
DOI: 10.48550/arxiv.1404.2069
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Feuilletages holomorphes de codimension 1: une étude locale dans le cas dicritique

Abstract: Nous décrivons les singularités de feuilletages holomorphes dicritiques de petite multiplicité en dimension 3. En particulier nous relions l'existence de déformations et de déploiements non triviaux à des problèmes d'intégrabilité liouvillienne.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2014
2014
2014
2014

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 16 publications
0
1
0
Order By: Relevance
“…We know that any non dicritical germ of codimension one foliation F in (C 3 , 0) always has an invariant germ of analytic surface, as proved in [7] (the result is also true in higher ambient dimension [10]). Following a local version of Brunella's alternative [15] and a conjecture of D. Cerveau [14] we ask whether any germ of codimension one foliation F over (C 3 , 0) without invariant germ of surface satisfies the following property:…”
Section: Introductionmentioning
confidence: 99%
“…We know that any non dicritical germ of codimension one foliation F in (C 3 , 0) always has an invariant germ of analytic surface, as proved in [7] (the result is also true in higher ambient dimension [10]). Following a local version of Brunella's alternative [15] and a conjecture of D. Cerveau [14] we ask whether any germ of codimension one foliation F over (C 3 , 0) without invariant germ of surface satisfies the following property:…”
Section: Introductionmentioning
confidence: 99%