2022
DOI: 10.1364/josab.462459
|View full text |Cite
|
Sign up to set email alerts
|

Few-mode fiber design for multiple-input-multiple-output-less mode division multiplexing by machine learning

Abstract: Neural networks (NNs), random forests (RF), and extreme gradient boosting (XGBoost) are applied separately to inversely design the ring-core few-mode fiber (FMF) with a desired weakly coupled performance. We demonstrate the procedure of inverse designing of FMF via machine learning (ML) algorithms and evaluate the prediction accuracy of the above ML algorithms. Compared with RF and XGBoost, the NN performs the highest prediction accuracy. For the NN, RF, and XGBoost, the correlation coefficients of the mode ef… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
references
References 27 publications
0
0
0
Order By: Relevance