2022
DOI: 10.48550/arxiv.2207.08547
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Few-shot Fine-grained Image Classification via Multi-Frequency Neighborhood and Double-cross Modulation

Abstract: Traditional fine-grained image classification typically relies on large-scale training samples with annotated ground-truth. However, some sub-categories may have few available samples in real-world applications. In this paper, we propose a novel few-shot fine-grained image classification network (FicNet) using multi-frequency Neighborhood (MFN) and double-cross modulation (DCM). Module MFN is adopted to capture the information in spatial domain and frequency domain. Then, the self-similarity and multi-frequenc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 38 publications
0
0
0
Order By: Relevance