2023
DOI: 10.1049/cvi2.12205
|View full text |Cite
|
Sign up to set email alerts
|

Few‐shot logo detection

Abstract: The proliferation of deep learning has driven research into deep learning‐based logo detection, which usually needs a large number of annotated data to train the model. However, due to the occasional appearance of new brands or the high cost of annotation, the number of training data is limited. Against this backdrop, the authors adapt the few‐shot object detection into logo detection, and thus present a cutting‐edge method called Double Classification Head (DCH) for Few‐Shot Logo Detection (DCH‐FSLogo), which… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 65 publications
0
0
0
Order By: Relevance