The analysis of the reaction force and its topology has provided a wide range of fruitful concepts in the theory of chemical reactivity over the years, allowing to identify chemically relevant regions along a reaction profile. The reaction force (RF), a projection of the Hellmann-Feynman forces acting on the nuclei of a molecular system onto a suitable reaction coordinate, is partitioned using the interacting quantum atoms approach (IQA). The exact IQA molecular energy decomposition is now shown to open a unique window to identify and quantify the chemical entities that drive or retard a chemical reaction. The RF/IQA coupling offers an extraordinarily detailed view of the type and number of elementary processes that take reactants into products, as tested on two sets of simple reactions.