Copper alloy suspension wires are used in the optical pickups and image stabilization mechanisms of mobile cameras. The durability of suspension wires used in mobile cameras is greatly affected by the increase in the weight of the lens assembly as makers improve the image quality of the camera. Therefore, the durability of the wire needs improvement. In this study, the stress reduction effect of twisted suspension wires was investigated using finite element method (FEM) analysis. In addition, a practical equation was obtained to facilitate the structural design. From this study, the following conclusions were obtained. In contrast to the conventional single-wire structure, the twisted wire structure enables a significant reduction in the stress generated while maintaining the stiffness. A simple formula that approximates the results of many FEM analyses was developed to enable rapid product design.