With the rise of new technologies, the demand for efficient cryptographic hardware is rising. This work is focusing on finite field based cryptography. To explore the vast design space obtained from possible finite field parameters, automated generation of hardware submodules using designer-specified algorithms for finite field arithmetic is needed. This work presents a hardware design automation framework exploiting symbolic computation capabilities of GAP to generate the expressions, needed for hardware implementations, on-the-fly, and compiles them into synthesizable datapaths, test-vectors, and testbences.