Background: Fibroblast growth factor 21 (FGF21) is an important neuroprotective factor in the central nervous system (CNS), and it has been reported that FGF21 can protect against cerebral ischemia during the acute phase. However, the possible effects of FGF21 on ischemic brains and the interactions between FGF21 and nonneuronal cells have not been examined. Thus, the aim of this study was to elucidate the protective effects of endogenous FGF21 in ischemic brains.Methods: In this study, in vivo ischemia/reperfusion injury mouse model established by transient middle cerebral artery occlusion (MCAO)/reperfusion and in vitro cell models of oxygen/glucose deprivation (OGD)/reoxygenation (R) were used. Western blot analysis, RT-PCR, double immunofluorescence staining, immunohistochemistry, 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (H&E) staining, neurobehavioral tests, cell counting kit-8 (CCK-8) assay and high-throughput gene sequencing were employed to explore the mechanism by which FGF21 unleash neuroprotective effort of astrocyte phenotype shifts in ischemic stroke.Results: We found that cortical FGF21 expression significantly increased after MCAO/reperfusion, peaking at 7 d. Ischemia-activated microglia were the main sources of endogenous FGF21 in brain tissue. However, FGF21 deficiency aggravated brain injury and slowed neurological functional recovery in FGF21 knockout mice. The in vitro and vivo studies revealed that FGF21 could activate astrocytes and mediate astrocytic phenotype. FGF21-activated astrocytes contributed to neuronal survival and synaptic protein upregulation after ischemia.Conclusion: Collectively, our data indicate that FGF21 plays vital roles in alleviating ischemic brain by mediating the manifestation of potentially pro-recovery astrocytic phenotypes. Therefore, modulation of FGF21 is a potential target strategy for stroke.