An indirect method for monitoring dynamic deflection of beam-like structures using strain responses measured by long-gauge fiber Bragg grating (FBG) sensors is proposed in this paper. Firstly, a theoretical derivation shows that structural deflection is in direct and linear relationship to long-gauge strain. Meanwhile, the method is suitable for structures with different boundary conditions and irrelevant to external loads. Secondly, the influence of boundary conditions, load type and sensor gauge length on the method is investigated by numerical simulation. Finally, an experiment of a simply supported beam subjected to dynamic loads was designed to verify the method. Experimental results show that both deflection time-history of arbitrary points of structures and deflection distribution along structures at a certain time can be obtained with high-precision. Therefore, the method presented can be a new alternative for the deflection evaluation and maintenance of engineering structures.