Over the past decades, the development of fibre optic cables, which pass light waves carrying data guided by total internal reflection, has led to advances in high-speed and long-distance communication, large data transmission, optical imaging, and sensing applications. Thus far, fibre optic sensors (FOSs) have primarily been employed in engineering, biomedicine, and basic sciences, with few reports of their usage in geophysics as point and distributed sensors. This work aimed at reviewing the studies on the use of FOSs in geophysical applications with their fundamental principles and technological improvements. FOSs based on Rayleigh, Brillouin, and Raman scatterings and fibre Bragg grating sensors are reviewed based on their sensing performance comprising sensing range, spatial resolution, and measurement parameters. The recent progress in applying distributed FOSs to detect acoustic, temperature, pressure, and strain changes, as either single or multiple parameters simultaneously on surface and borehole survey environments with their cable deployment techniques, has been systematically reviewed. Despite the development of fibre optic sensor technology and corresponding experimental reports of applications in geophysics, there have not been attempts to summarise and synthesise fibre optic methods for prospecting as a comprehensive and modern branch of geophysics. Therefore, this paper outlines the fibre optic prospecting methods, with an emphasis on their advantages, as a guide for the geophysical community. The potential of the new outlined fibre optic prospecting methods to revolutionise conventional geophysical approaches is discussed. Finally, the future challenges and limitations of the new prospecting methods for geophysical applications are elucidated.