PURPOSE. ZEB1 is induced during endothelial-mesenchymal transition (EnMT) in the cornea. Induction of SP1 and SP3 by ZEB1 along with identification of putative SP1 and SP3 binding sites in promoters of EnMT-associated gene lead us to investigate their roles in retrocorneal membrane formation in the corneal endothelium. METHODS. Expressions of SP1, SP3, and EnMT associated genes were analyzed by immunoblotting and semiquantitative reverse transcription polymerase chain reaction. Accell SMARTpool siRNAs targeting ZEB1, SP1, and SP3 were used for gene knockdown. SP1 and SP3 binding to promoters of EnMT associated genes was investigated by chromatin immunoprecipitation assay. Corneal endothelium in mice was surgically injured in vivo under direct visualization. RESULTS. Transient Fibroblast Growth Factor 2 stimulation increased the expression of both SP1 and SP3 in the human corneal endothelium ex vivo. ZEB1 siRNA knockdown inhibited FGF2-induced SP1 mRNA and protein but not the expression of SP3. FGF2induced expression of EnMT-related genes, such as fibronectin, vimentin, and type I collagen, was reduced by both SP1 and SP3 siRNA knockdown, with inhibition of SP1 having a greater inhibitory effect than SP3. Additionally, although SP1 and SP3 proteins were found to bind together, SP1 and SP3 could bind to the same promoter binding sites of EnMT-related genes in the absence of the other. Moreover, siRNA knockdown of Zeb1 inhibited injury-dependent RCM formation in mouse corneal endothelium in vivo. CONCLUSIONS. Zeb1, through SP1 and SP3, plays a central role in mesenchymal transition induced fibrosis in the corneal endothelium and suggests that Zeb1 could be targeted to inhibit anterior segment fibrosis.