The existing coating systems used for the preparation of super-hydrophobic surfaces are facing new challenges because the use of organic solvents and long-carbon-chain organic fluorine monomers is banned. In this article, the authors have proven that by using inductively coupled plasma-enhanced chemical vapor deposition (PECVD) with argon (Ar), which is a completely dry process, lauryl methacrylate (LMA) can produce a stable super-hydrophobic coating effect. The effect of electron temperature on the super-hydrophobicity of cotton fabrics is investigated in terms of water repellency, chemical composition, and surface morphology. It is found that the improvement in the hydrophobicity of cotton fabric is attributed to the deposition of alkyl and ester groups, and the formation of a micro-nano-structure on the surface of the fabric after plasma treatment. The electron temperature plays an important role in achieving the super-hydrophobicity of cotton fabrics. The plasma-enhanced coating may offer a safe and dry super-hydrophobic technique with diverse applications.