Serotonin-based nanomaterials have been positioned as promising contenders for constructing multifunctional biomedical nanoplatforms due to notable biocompatibility, advantageous charge properties, and chemical adaptability. The elaborately designed structure and morphology are significant for their applications as functional carriers. In this study, we fabricated anisotropic bowl-like mesoporous polyserotonin (PST) nanoparticles with a diameter of approximately 170 nm through nano-emulsion polymerization, employing P123/F127 as a dual-soft template and 1,3,5-trimethylbenzene (TMB) as both pore expander and emulsion template. Their formation can be attributed to the synchronized assembly of P123/F127/TMB, along with the concurrent manifestation of anisotropic nucleation and growth on the TMB emulsion droplet surface. Meanwhile, the morphology of PST nanoparticles can be regulated from sphere- to bowl-like, with a particle size distribution ranging from 432 nm to 100 nm, experiencing a transformation from a dendritic, cylindrical open mesoporous structure to an approximately non-porous structure by altering the reaction parameters. The well-defined mesopores, intrinsic asymmetry, and pH-dependent charge reversal characteristics enable the as-prepared mesoporous bowl-like PST nanoparticles’ potential for constructing responsive biomedical nanomotors through incorporating some catalytic functional materials, 3.5 nm CeO2 nanoenzymes, as a demonstration. The constructed nanomotors demonstrate remarkable autonomous movement capabilities under physiological H2O2 concentrations, even at an extremely low concentration of 0.05 mM, showcasing the 51.58 body length/s velocity. Furthermore, they can also respond to physiological pH values ranging from 4.4 to 7.4, exhibiting reduced mobility with increasing pH. This charge reversal-based responsive nanomotor design utilizing PST nanoparticles holds great promise for advancing the application of nanomotors within complex biological systems.