“…Computing and learning equilibria in Markov games has attracted considerable interest recently. Most focus has been on the Nash equilibrium in either identical-interestor more generally, potential-games (Fox et al 2022;Leonardos et al 2022;Aydin and Eksin 2023;Ding et al 2022;Zhang et al 2022b), or two-player zero-sum Markov games (Daskalakis, Foster, and Golowich 2020;Cen et al 2023;Wei et al 2021;Zhang et al 2020;Sayin et al 2021;Huang et al 2022;Cui and Du 2022;Perolat et al 2015;Zeng, Doan, and Romberg 2022;Pattathil, Zhang, and Ozdaglar 2023;Yang and Ma 2023), albeit with a few exceptions (Qin and Etesami 2023;Sayin 2023;Giannou et al 2022;Kalogiannis and Panageas 2023;Kalogiannis et al 2023;Park, Zhang, and Ozdaglar 2023). In general-sum multi-player games, in light of the intractability of Nash equilibria, most focus has been on computing or indeed learning (coarse) correlated equilibria (Daskalakis, Golowich, and Zhang 2023;Jin et al 2021;Erez et al 2023;Liu, Szepesvári, and Jin 2022;Zhang et al 2022a).…”