Triboelectrification due to frictional contacts between particles and surfaces is prevalent in many powder handling processes. Aiming to explore the friction-induced electrostatic charging behavior, a discrete element method (DEM) is developed for the first time in the current article, in which a frictional charging model and electrostatic interaction models are implemented. The charge accumulation on both the particles and the surface in a rotational container is then analyzed numerically and experimentally to evaluate the developed DEM. The numerical results for the frictional electrification between insulant particles and an insulant wall agree well with the experimental measurement. It is also shown that both the net charge on the particles and the degree of the particle dispersion are a function of the charging time. Moreover, it is revealed that the friction-induced particle charge enhances particle dispersion, and increases the granular temperature due to the electrostatic interactions.