2023
DOI: 10.1088/2053-1591/acd1d4
|View full text |Cite
|
Sign up to set email alerts
|

Field emission properties of nano-tendril bundles formed via helium plasma exposure with various additional impurity gases

Abstract: Nano-tendril bundles (NTBs) were formed via helium plasma exposure with various additional impurity gases, such as neon (Ne), nitrogen (N2), and argon (Ar). The sizes of the NTBs showed different distributions with different additional impurity gases. The field emission properties of the NTBs formed with various additional impurity gases were measured. The field-emission properties were significantly affected by the morphology of the NTBs, especially the tips of the fibers. In the Ne- and Ar-seeded cases, the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 31 publications
0
1
0
Order By: Relevance
“…While the materials science community has a long history of conducting fundamental and applied research on plasma-materials interactions [6][7][8], this collection focuses on the same type of physics with respect to a nuclear fusion environment. The topics covered are unique to 'Plasma-Facing Materials in Nuclear Fusion Reactors' such as: deuterium and tritium retention in PFCs [9][10][11][12][13]; fundamental processes at the plasma-surface interface [10,[14][15][16][17][18][19][20]; evolution of structure and properties under fusion-reactor-relevant heat loads [21]; material degradation under ion exposure [15,16,19]; material degradation under neutron irradiation [9,21]; material erosion, migration, and deposition [14,15,18,20,22]; plasma fueling [12]; and diagnostics for plasmamaterials interactions [23]. Although the details of the underlying mechanisms that govern the above phenomena remain largely unresolved, the results presented here will drive the emergence of engineering solutions to the amelioration of plasma-facing materials degradation.…”
mentioning
confidence: 99%
“…While the materials science community has a long history of conducting fundamental and applied research on plasma-materials interactions [6][7][8], this collection focuses on the same type of physics with respect to a nuclear fusion environment. The topics covered are unique to 'Plasma-Facing Materials in Nuclear Fusion Reactors' such as: deuterium and tritium retention in PFCs [9][10][11][12][13]; fundamental processes at the plasma-surface interface [10,[14][15][16][17][18][19][20]; evolution of structure and properties under fusion-reactor-relevant heat loads [21]; material degradation under ion exposure [15,16,19]; material degradation under neutron irradiation [9,21]; material erosion, migration, and deposition [14,15,18,20,22]; plasma fueling [12]; and diagnostics for plasmamaterials interactions [23]. Although the details of the underlying mechanisms that govern the above phenomena remain largely unresolved, the results presented here will drive the emergence of engineering solutions to the amelioration of plasma-facing materials degradation.…”
mentioning
confidence: 99%