The recent surge of interest in electrostatic actuators, particularly for soft robotic applications, has placed increasing demands on high voltage control technology. In this respect, optoelectronic bidirectional switching and analogue regulation of high voltages is becoming increasingly important. One common problem is the leakage current due to dark resistance of the material or device used. Another is the physical size of such elements. However, their ability to provide galvanic separation makes them a very attractive alternative to conventional (wired) semiconductor elements. This paper gives an overview of available methods and devices before introducing a concept based on the combination of photoresistive and magnetoresistive effects in Gallium Arsenide that are potentially applicable to other semiconductor materials.