The molecular orientation created by laser fields is important for steering chemical reactions. In this paper, we propose a theoretical scheme to manipulate field-free molecular orientation by using an intense super-Gaussian laser pulse and a time-delayed terahertz half-cycle pulse (THz HCP). It is shown that the degree of field-free orientation can be doubled by the combined pulse with respect to the super-Gaussian pulse or THz HCP alone. Moreover, different laser intensities, carrier envelop phases, shape parameters, and time delays have great influence on the positive and negative orientations, with other conditions unchanged. Furthermore, it is indicated that the maximum degree and direction of molecular orientation can be precisely controlled by half of the duration of the super-Gaussian pulse. Finally, by adjusting the laser parameters of the super-Gaussian laser pulse and THz HCP, the optimal results of negative orientation and corresponding rotational populations are obtained at different temperatures of the molecular system.