Nowadays, people spend an average of 87% of their time inside buildings, and about 69% at home. Hence, it is essential to ensure the highest possible level of indoor air quality (IAQ). Providing that the quality of the outdoor air is acceptable, the IAQ level is improved by increasing the ventilation rates. However, this means that a larger volume of air must be cooled down or warmed up to ensure the same level of thermal comfort. The aim of this study was to conduct a cost–benefit analysis of the IAQ in residential buildings. A case-study building was defined, and three sets of materials with different pollution emission levels were chosen: High, low, and very low. For each option, the ventilation rates required to have the same IAQ level were calculated, and the consequent energy consumption and costs were estimated by means of dynamic thermal simulation. The results show the range of the initial capital cost that could be compensated for by lower running costs, and the effect of each energy and economic input assumption on the appraisal of the affordable capital cost. In the discussion, insights into the IAQ co-benefits are also given.