The measurement of a time-varying magnetic field is different from a constant magnetic field, due to its field intensity variation with time. Usually, the time-varying magnetic field measurement converts the solution of the magnetic induction intensity into the calculation of the induced electromotive force (EMF); then, the magnetic induction intensity is obtained by the time integration of the EMF, but the process is vulnerable to external interference. In this paper, a non-steady state nuclear magnetic resonance (NSS-NMR) scheme for the measurement of a time-varying magnetic field is proposed. In a time-varying magnetic field environment, an RF excitation signal with a certain frequency bandwidth is applied to excite the nuclear spin system. The NSS-NMR signal, which varies with time in the frequency range corresponding to the frequency bandwidth of the RF excitation, could finally be obtained after a series of processing of the probe output signal. During the NSS-NMR experiment, an orthogonal dual-coil probe is adopted to synchronously generate the RF excitation and induce the probe output signal. Moreover, a directional coupler that utilized in the experiment outputs a reference signal from the coupling port for the subsequent signal processing. The experimental results show that the weak NSS-NMR signal is indeed observed. The longitudinal time-varying magnetic field ranges from 0.576 T to 0.582 T, which is inverted by the Larmor precession relationship, have been successfully detected based on the so-called NSS-NMR effect.