The internet is frequently surfed by people by using smartphones, laptops, or computers in order to search information online in the web. The increase of information in the web has made the web pages grow day by day. The automatic topic-based web page classification is used to manage the excessive amount of web pages by classifying them to different categories based on the web page content. Different machine learning algorithms have been employed as web page classifiers to categorise the web pages. However, there is lack of study that review classification of web pages using deep learning. In this study, the automatic topic-based classification of web pages utilising deep learning that has been proposed by many key researchers are reviewed. The relevant research papers are selected from reputable research databases. The review process looked at the dataset, features, algorithm, pre-processing used in classification of web pages, document representation technique and performance of the web page classification model. The document representation technique used to represent the web page features is an important aspect in the classification of web pages as it affects the performance of the web page classification model. The integral web page feature is the textual content. Based on the review, it was found that the image based web page classification showed higher performance compared to the text based web page classification. Due to lack of matrix representation that can effectively handle long web page text content, a new document representation technique which is word cloud image can be used to visualize the words that have been extracted from the text content web page.