This paper proposes a methodology for the analysis and tuning of controllers using control verification metrics. These metrics, which are introduced in a companion paper, measure the size of the largest uncertainty set of a given class for which the closed-loop specifications are satisfied. This framework integrates deterministic and probabilistic uncertainty models into a setting that enables the deformation of sets in the parameter space, the control design space, and in the union of these two spaces. In regard to control analysis, we propose strategies that enable bounding regions of the design space where the specifications are satisfied by all the closed-loop systems associated with a prescribed uncertainty set. When this is unfeasible, we bound regions where the probability of satisfying the requirements exceeds a prescribed value. In regard to control tuning, we propose strategies for the improvement of the robust characteristics of a baseline controller. Some of these strategies use multi-point approximations to the control verification metrics in order to alleviate the numerical burden of solving a min-max problem. Since this methodology targets non-linear systems having an arbitrary, possibly implicit, functional dependency on the uncertain parameters and for which high-fidelity simulations are available, they are applicable to realistic engineering problems.