Plant pathogens deliver effector proteins to reprogramme a host plants circuitry, supporting their own growth and development, whilst thwarting defence responses. A subset of these effectors are termed avirulence factors (Avr) and can be recognised by corresponding host resistance (R) proteins, creating a strong evolutionary pressure on pathogen Avr effectors that favours their modification/deletion to evade the immune response. Hence, identifying Avr effectors and tracking their allele frequencies in a population is critical for understanding the loss of host recognition. However, the current systems available to confirm Avr effector function, particularly for obligate biotrophic fungi, remain limited and challenging. Here, we explored the utility of the genetically tractable wheat blast pathogen Magnaporthe oryzae pathotype Triticum (MoT) as a suitable heterologous expression system in wheat. Using the recently confirmed wheat stem rust pathogen (Puccina graminis f. sp. tritici) avirulence effector AvrSr50 as a proof-of-concept, we found that delivery of AvrSr50 via MoT could elicit a visible Sr50-dependant cell death phenotype. However, activation of Sr50-mediated cell death correlated with a high transgene copy number and transcript abundance in MoT transformants. This illustrates that MoT can act as an effective heterologous delivery system for fungal effectors from distantly related fungal species, but only when enough transgene copies and/or transcript abundance is achieved.