Purpose: To evaluate the influence of quantity and positioning of veneered zirconia specimens during firing of porcelain on their fatigue performance and colorimetric differences. Methods: Bilayer discs (Ø=15 mm) were made, following ISO 6872 guidelines, using a Y-TZP core (yttria-stabilized tetragonal zirconia polycrystal ceramic; VITA In-Ceram YZ) and a feldspathic veneering material (VITA VM9), being both layers with 0.7 mm thickness. Y-TZP discs were sintered, the veneering material was applied over it, and the bilayer specimens were fired according to two factors (n=20): 'quantity' (1 or 5 samples per firing cycle; G1 and G5 groups respectively) and 'positioning' of the specimens inside the furnace (center or periphery of the refractory tray; G5C and G5P groups, respectively). The CIEL*a*b* parameters were recorded with a spectrophotometer and the color difference (ΔE 00) and translucency (TP 00) were calculated using CIEDE2000 equations. The step-stress fatigue test was performed with the veneer facing down (region of tensile stress concentration), 10 Hz frequency, initial tension of 20 MPa for 5,000 cycles, followed by steps of 10,000 cycles using a step size of 10 MPa, up to 100 MPa; data from strength and number of cycles for failure were recorded for statistical analysis. Results: Unacceptable color differences (ΔE 00 >1.8) were observed comparing G5C vs. G1 (quantity) and G5C vs. G5P (positioning), meanwhile translucency parameters were not affected. Besides, only the 'quantity' factor influenced the fatigue performance (G1>G5C). None of the tested specimens survived beyond 90N and/or 75000 cycles. Conclusions: The quantity and position of the specimens during firing influence the final color of porcelain-veneered zirconia, and firing one specimen per cycle improved the fatigue performance of the bilayer system.