A B S T R A C T Innate immune cells are the first to recover after allogeneic hematopoietic cell transplantation (HCT). Nevertheless, reports of innate immune cell recovery and their relation to adaptive recovery after HCT are largely lacking. Especially predicting CD4 + T cell reconstitution is of clinical interest, because this parameter directly associates with survival chances after HCT. We evaluated whether innate recovery relates to CD4 + T cell reconstitution probability and investigated differences between innate recovery after cord blood transplantation (CBT) and bone marrow transplantation (BMT). We developed a multivariate, combined nonlinear mixed-effects model for monocytes, neutrophils, and natural killer (NK) cell recovery after transplantation. A total of 205 patients undergoing a first HCT (76 BMT, 129 CBT) between 2007 and 2016 were included. The median age was 7.3 years (range, .16 to 23). Innate recovery was highly associated with CD4 + T cell reconstitution probability (P < .001) in multivariate analysis correcting for covariates. Monocyte (P < .001), neutrophil (P < .001), and NK cell (P < .001) recovery reached higher levels during the first 200 days after CBT compared with BMT. The higher innate recovery after CBT may be explained by increased proliferation capacity (measured by Ki-67 expression) of innate cells in CB grafts compared with BM grafts (P = .041) and of innate cells in vivo after CBT compared with BMT (P = .048). At an individual level, patients with increased innate recovery after either CBT or BMT had received grafts with higher proliferating innate cells (CB; P = .004, BM; P = .01, respectively). Our findings implicate the use of early innate immune monitoring to predict the chance of CD4 + T cell reconstitution after HCT, with respect to higher innate recovery after CBT compared with BMT.