Studies on the surface modification of commercial styrene-butadiene-styrene (SBS) rubber with different carbon black (CB) nanofiller content (10–80 parts per hundred parts of rubber (phr)) performed by low-pressure oxygen plasma are presented in this paper. The adhesion properties of the rubber were determined by the peel test for adhesive-bonded joints prepared with a water-based polyurethane (PU) adhesive. The chemical structure and morphology of the SBS rubber surface before and after plasma treatment were investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. The peel tests showed that the plasma treatment significantly improved the strength of adhesive-bonded joints in the entire range of CB tested, revealing a clear maximum for approximately 50 phr of CB. It was also found that as a result of plasma treatment, functional groups that are responsible for the reactions with the PU adhesive, such as C−OH and C=O, were formed, and their concentration, similar to the peel strength, showed maximum values for approximately 50 phr CB. The occurrence of these maxima was explained using the bound rubber model.