2020
DOI: 10.48550/arxiv.2002.12308
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Fillings of skew shapes avoiding diagonal patterns

Vít Jelínek,
Mark Karpilovskij

Abstract: A skew shape is the difference of two top-left justified Ferrers shapes sharing the same top-left corner. We study integer fillings of skew shapes. As our first main result, we show that for a specific hereditary class of skew shapes, which we call D-free shapes, the fillings that avoid a north-east chain of size k are in bijection with fillings that avoid a south-east chain of the same size. Since Ferrers shapes are a subclass of D-free shapes, this result can be seen as a generalization of previous analogous… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?