Digital terrestrial television is now implemented in many countries worldwide and is now mature. Digital Video Broadcasting-Terrestrial, second generation (DVB-T2) is the European standard adopted or deployed by European and African countries which uses Orthogonal Frequency-Division Multiplexing (OFDM) modulation to achieve good throughput performance. However, its main particularity is the number of subcarriers operated for OFDM modulation which varies from 1024 to 32,768 subcarriers. Also, mobile reception is planned in DVB-T2 in addition to rooftop antenna and portable receptions planned in DVB-T. However, the main challenge of DVB-T2 for mobile reception is the presence of a carrier frequency offset (CFO) which degrades the system performance by inducing an Intercarrier Interference (ICI) on the DVB-T2 signal. This paper evaluates the system performance in the presence of the CFO when Gaussian noise and a TU6 channel are applied. Universal Filtered Multicarrier (UFMC) and non-uniform constellations (NUCs) have previously demonstrated good performance in comparison with OFDM and Quadrature Amplitude Modulation (QAM) in DVB-T2. The impact of CFO on the UFMC- and NUC-based DVB-T2 system is additionally investigated in this work. The results demonstrate that the penalties induced by CFO insertion in UFMC- and NUC-based DVB-T2 are highly reduced in comparison to those for the native DVB-T2. At a bit error rate (BER) of 10−3, the CFO penalties induced by the native DVB-T2 are 0.96dB and 4 dB, respectively, when only Additive White Gaussian Noise (AWGN) is used and when TU6 is additionally considered. The penalties are equal to 0.84dB and 0.2dB for UFMC/NUC-based DVB-T2.