Abstract. This papers presents properties of spatial linear systems described by a certain physical quantity generated by a differential equation. This quantity can be represented by internal electric or magnetic field inside the material, by concentration or by similar physical or chemical quantities. A specific differential equation generates this quantity considering as input the spatial alternating variations of an internal parameter. As a consequence, specific spatial linear variations of the observable output physical quantity appear. It is shown that in case of very short range variations of this internal parameters, systems described by a differential equation able to generate a practical test-function exhibit an output which appears to an external observer under the form of two distinct envelopes. These can be considered as two distinct structural patterns located in the same material along a certain linear axis.