The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. The bipolar filtration introduced by T Cochran, S Harvey and P Horn is a framework for the study of smooth concordance of topologically slice knots and links. It is known that there are topologically slice 1-bipolar knots which are not 2-bipolar. For knots, this is the highest known level at which the filtration does not stabilize. For the case of links with two or more components, we prove that the filtration does not stabilize at any level: for any n, there are topologically slice links which are n-bipolar but not .n C 1/-bipolar. In the proof we describe an explicit geometric construction which raises the bipolar height of certain links exactly by one. We show this using the covering link calculus. Furthermore we discover that the bipolar filtration of the group of topologically slice string links modulo smooth concordance has a rich algebraic structure.
57M25, 57N70