Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Atmospheric conditions vary significantly in terms of the temporal and spatial scales. Therefore, it is critical to obtain atmospheric parameters synchronized with an image for atmospheric correction based on radiative transfer calculation methods. On 3 July 2020, the high resolution and multimode imaging satellite, Gao Fen Duo Mo (GFDM), which was the first civilian high-resolution remote sensing satellite equipped with the Synchronization Monitoring Atmospheric Corrector (SMAC), was launched. The SMAC is a multispectral and polarization detection device that is used to retrieve atmospheric parameters that are time-synchronized with the image sensor of GFDM in the same field-of-view. On the basis of the atmospheric parameters obtained from the SMAC, a synchronization atmospheric correction (Syn-AC) method is proposed to remove the influence of the atmosphere and the adjacency effects to retrieve the surface reflectance. The Syn-AC method was applied in the experiments of synchronous atmospheric correction for GFDM images, where the surface reflectance retrieved via the Syn-AC method was compared with the field-measured values. In addition, the classical correction method, the FLAASH, was applied in the experiments to compare its performance with that of the Syn-AC method. The results indicated that the image possessed better clarity and contrast with the blurring effect removed, and the multispectral reflectance was in agreement with the field-measured spectral reflectance. The deviations between the reflectance retrievals of Syn-AC and the field-measured values of the selected targets were within 0.0625, representing a higher precision than that of the FLAASH method (the max deviation was 0.2063). For the three sites, the mean relative error of Syn-AC was 19.3%, and the mean relative error of FLAASH was 76.6%. Atmospheric correction based on synchronous atmospheric parameters can improve the quantitative accuracy of remote sensing images, and it is meaningful for remote sensing applications.
Atmospheric conditions vary significantly in terms of the temporal and spatial scales. Therefore, it is critical to obtain atmospheric parameters synchronized with an image for atmospheric correction based on radiative transfer calculation methods. On 3 July 2020, the high resolution and multimode imaging satellite, Gao Fen Duo Mo (GFDM), which was the first civilian high-resolution remote sensing satellite equipped with the Synchronization Monitoring Atmospheric Corrector (SMAC), was launched. The SMAC is a multispectral and polarization detection device that is used to retrieve atmospheric parameters that are time-synchronized with the image sensor of GFDM in the same field-of-view. On the basis of the atmospheric parameters obtained from the SMAC, a synchronization atmospheric correction (Syn-AC) method is proposed to remove the influence of the atmosphere and the adjacency effects to retrieve the surface reflectance. The Syn-AC method was applied in the experiments of synchronous atmospheric correction for GFDM images, where the surface reflectance retrieved via the Syn-AC method was compared with the field-measured values. In addition, the classical correction method, the FLAASH, was applied in the experiments to compare its performance with that of the Syn-AC method. The results indicated that the image possessed better clarity and contrast with the blurring effect removed, and the multispectral reflectance was in agreement with the field-measured spectral reflectance. The deviations between the reflectance retrievals of Syn-AC and the field-measured values of the selected targets were within 0.0625, representing a higher precision than that of the FLAASH method (the max deviation was 0.2063). For the three sites, the mean relative error of Syn-AC was 19.3%, and the mean relative error of FLAASH was 76.6%. Atmospheric correction based on synchronous atmospheric parameters can improve the quantitative accuracy of remote sensing images, and it is meaningful for remote sensing applications.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.