The present paper examines the effect of vertical harmonic vibration on the onset of convection in an infinite horizontal layer of fluid saturating a porous medium. A constant temperature distribution is assigned on the rigid boundaries, so that there exists a vertical temperature gradient. The mathematical model is described by equations of filtration convection in the Darcy-Oberbeck-Boussinesq approximation. The linear stability analysis for the quasiequilibrium solution is performed using Floquet theory. Employment of the method of continued fractions allows derivation of the dispersion equation for the Floquet exponent σ in an explicit form. The neutral curves of the Rayleigh number Ra versus horizontal wave number α for the synchronous and subharmonic resonant modes are constructed for different values of frequency Ω and amplitude A of vibration. Asymptotic formulas for these curves are derived for large values of Ω using the method of averaging, and, for small values of Ω, using the WKB method. It is shown that, at some finite frequencies of vibration, there exist regions of parametric instability. Investigations carried out in the paper demonstrate that, depending on the governing parameters of the problem, vertical vibration can significantly affect the stability of the system by increasing or decreasing its susceptibility to convection. (2000). 76E15, 76S05, 35Q35.
Mathematics Subject Classification