A simple approach to deliver graphene or graphite nanoplatelets (GNPs) into carbon fibre reinforced plastic (CFRPs) to enhance the multifunctional properties of carbon/epoxy laminates was demonstrated. GNPs improved the typically low interlaminar mechanical, thermal, and electrical properties of CFRPs after direct vacuum infusion of GNP doped resin obtained via in situ exfoliation by three-roll milling (TRM). Compared to high shear mixing or probe ultrasonication, TRM produces higher shear rates and stresses to exfoliate and finely disperse GNP particles within an epoxy matrix. This environmentally friendly and industrial scalable process does not require the use of solvents, additives, or chemical treatments. The flexural modulus and interlaminar shear strength (ILSS) of CFRPs was increased by 15% and by 18%, respectively, with the addition of 5 wt.% in situ exfoliated GNP in the doped epoxy resin. Out-of-plane electrical and thermal conductivity, at the same filler content, were, respectively, improved by nearly two orders of magnitude and 50%.