Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Late Paleozoic strata on the northwestern margin of the Tarim Block provide valuable insights into the subduction and collision processes that formed the Southwest Tianshan Orogenic Belt. This study integrates detrital zircon U-Pb dating and sandstone geochemical analysis of the Balikelike and Kalundaer formations to examine sedimentary provenance and tectonic settings during the Cisuralian–Guadalupian Epoch in the Keping area on the northwestern margin of the Tarim Block. Three of five Precambrian detrital zircon U-Pb age populations, 2500–2300 and 2000–1800 Ma and 900–600 Ma, are likely related to the fragmentation of the Columbia supercontinent and Rodinia’s assembly, respectively. Two Paleozoic detrital zircons, 500–380 Ma, are associated with Paleozoic magmatism. Among them, ~295 Ma zircons are associated with post-collisional extension and emplacement of the Tarim Large Igneous Province. Geochemical analysis of sandstones, coupled with tectonic reconstruction, indicates a passive continental margin setting in the northwestern margin of the Tarim Block during the Silurian Period, later transitioned to a foreland basin from the Pennsylvanian to the Guadalupian Epochs. The crustal transformation from the Middle-late Devonian to Early Mississippian marked the closure of the South Tianshan Ocean (STO), involving a soft collision and significant uplift, with major orogenesis occurring in the Late Guadalupian. Five key stages are identified in the evolution of the foreland basin: (1) Middle-late Devonian to Early Mississippian initiation (remnant ocean basin stage); (2) Late Mississippian to Early Pennsylvanian early stage; (3) Late Pennsylvanian to Early Cisuralian middle stage; (4) the Late Cisuralian stage; and (5) the terminal Guadalupian stage. These findings provide new constraints on when STO closed and propose an innovative foreland basin evolution model during the late post-collisional phase from the Late Mississippian to Guadalupian. Collectively, the data advance our understanding of the tectonic processes that shaped the northwestern Tarim Block, with broader implications for Paleozoic geodynamics.
The Late Paleozoic strata on the northwestern margin of the Tarim Block provide valuable insights into the subduction and collision processes that formed the Southwest Tianshan Orogenic Belt. This study integrates detrital zircon U-Pb dating and sandstone geochemical analysis of the Balikelike and Kalundaer formations to examine sedimentary provenance and tectonic settings during the Cisuralian–Guadalupian Epoch in the Keping area on the northwestern margin of the Tarim Block. Three of five Precambrian detrital zircon U-Pb age populations, 2500–2300 and 2000–1800 Ma and 900–600 Ma, are likely related to the fragmentation of the Columbia supercontinent and Rodinia’s assembly, respectively. Two Paleozoic detrital zircons, 500–380 Ma, are associated with Paleozoic magmatism. Among them, ~295 Ma zircons are associated with post-collisional extension and emplacement of the Tarim Large Igneous Province. Geochemical analysis of sandstones, coupled with tectonic reconstruction, indicates a passive continental margin setting in the northwestern margin of the Tarim Block during the Silurian Period, later transitioned to a foreland basin from the Pennsylvanian to the Guadalupian Epochs. The crustal transformation from the Middle-late Devonian to Early Mississippian marked the closure of the South Tianshan Ocean (STO), involving a soft collision and significant uplift, with major orogenesis occurring in the Late Guadalupian. Five key stages are identified in the evolution of the foreland basin: (1) Middle-late Devonian to Early Mississippian initiation (remnant ocean basin stage); (2) Late Mississippian to Early Pennsylvanian early stage; (3) Late Pennsylvanian to Early Cisuralian middle stage; (4) the Late Cisuralian stage; and (5) the terminal Guadalupian stage. These findings provide new constraints on when STO closed and propose an innovative foreland basin evolution model during the late post-collisional phase from the Late Mississippian to Guadalupian. Collectively, the data advance our understanding of the tectonic processes that shaped the northwestern Tarim Block, with broader implications for Paleozoic geodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.