“…Kemudian para peneliti mengembangkan kembali kajian mengenai financial distress dengan berbagai metode pada berbagai negara. Pada kajian financial distress di berbagai negara, berbagai metode telah dikembangkan untuk menganalisis kondisi financial distress antara lain menggunakan model logit (Mselmi et al, 2017;), artificial neural networks (Mselmi et al, 2017;Choi et al, 2018;Barboza et al, 2017), support vector machine (Mselmi et al, 2017;Choi et al, 2018), partial least square (Mselmi et al, 2017;), model hybrid (Mselmi et al, 2017), model deep learning (Mai et al, 2018;Ogachi dkk., 2020), discriminant analysis (Pham Vo Ninh et al, 2018;Svabova & Michalkova, 2020;Agrawal & Maheshwari, 2019), distance-to-default (DD) models (Pham Vo Ninh et al, 2018), maximum weighted count of errors and correct result (Choi et al, 2018), commercial version 4.5 (Choi et al, 2018), naïve baves (Choi et al, 2018), logistic regression (Choi et al, 2018;Svabova & Michalkova, 2020;Agrawal & Maheshwari, 2019;Shrivastava et al, 2018;Barboza et al, 2017), k-nearest neighbor (Choi et al, 2018;), multi-period logit model (Charalambakis & Garrett, 2019), multiple binary regression logistic (Yazdanfar & Öhman, 2020), CART binominal tree method (Svabova & Michalkova, 2020), dan decisions trees (Klepac & Hampel, 2017).…”