Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Centrality metrics have become a popular concept in network science and optimization. Over the years, centrality has been used to assign importance and identify influential elements in various settings, including transportation, infrastructure, biological, and social networks, among others. That said, most of the literature has focused on nodal versions of centrality. Recently, group counterparts of centrality have started attracting scientific and practitioner interest. The identification of sets of nodes that are influential within a network is becoming increasingly more important. This is even more pronounced when these sets of nodes are required to induce a certain motif or structure. In this study, we review group centrality metrics from an operations research and optimization perspective for the first time. This is particularly interesting due to the rapid evolution and development of this area in the operations research community over the last decade. We first present a historical overview of how we have reached this point in the study of group centrality. We then discuss the different structures and motifs that appear prominently in the literature, alongside the techniques and methodologies that are popular. We finally present possible avenues and directions for future work, mainly in three areas: (i) probabilistic metrics to account for randomness along with stochastic optimization techniques; (ii) structures and relaxations that have not been yet studied; and (iii) new emerging applications that can take advantage of group centrality. Our survey offers a concise review of group centrality and its intersection with network analysis and optimization.
Centrality metrics have become a popular concept in network science and optimization. Over the years, centrality has been used to assign importance and identify influential elements in various settings, including transportation, infrastructure, biological, and social networks, among others. That said, most of the literature has focused on nodal versions of centrality. Recently, group counterparts of centrality have started attracting scientific and practitioner interest. The identification of sets of nodes that are influential within a network is becoming increasingly more important. This is even more pronounced when these sets of nodes are required to induce a certain motif or structure. In this study, we review group centrality metrics from an operations research and optimization perspective for the first time. This is particularly interesting due to the rapid evolution and development of this area in the operations research community over the last decade. We first present a historical overview of how we have reached this point in the study of group centrality. We then discuss the different structures and motifs that appear prominently in the literature, alongside the techniques and methodologies that are popular. We finally present possible avenues and directions for future work, mainly in three areas: (i) probabilistic metrics to account for randomness along with stochastic optimization techniques; (ii) structures and relaxations that have not been yet studied; and (iii) new emerging applications that can take advantage of group centrality. Our survey offers a concise review of group centrality and its intersection with network analysis and optimization.
No abstract
Betweenness centrality (BC), a classic measure which quantifies the importance of a vertex to act as a communication "bridge" between other vertices in the network, is widely used in many practical applications. With the advent of large heterogeneous information networks (HINs) which contain multiple types of vertices and edges like movie or bibliographic networks, it is essential to study BC computation on HINs. However, existing works about BC mainly focus on homogeneous networks. In this paper, we are the first to study a specific type of vertices' BC on HINs, e.g., find which vertices with typeAare important bridges to the communication between other vertices also with typeA?We advocate a meta path-based BC framework on HINs and formalize both coarse-grained and fine-grained BC (cBC and fBC) measures under the framework. We propose a generalized basic algorithm which can apply to computing not only cBC and fBC but also their variants in more complex cases. We develop several optimization strategies to speed up cBC or fBC computation by network compression and breadth-first search directed acyclic graph (BFS DAG) sharing. Experiments on several real-world HINs show the significance of cBC and fBC, and the effectiveness of our proposed optimization strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.