Recently, with the express growth of social network, users have joined more and more of these networks and live their life virtually. Consequently, they create a huge data on these social networks: their profile, interest, and behavior such as post, comment, like, joining groups or communities, etc. This brings some new challenges to researchers: do users having the same profile/interest show the same behavior? And vice versa, do users having the same behavior have interest in the same things? One of the basic issues in these challenges is the problem of estimating the similarity among users on these social networks based on their profile, interest, and behavior. This paper presents a model for estimating the similarity between users based on their behavior on social networks. The considered behaviors are activities including posting entries, liking these entries, commenting and liking the comment in these entries. The model is then evaluated with a dataset-collected users from Twitter. The results show that the model estimates correctly the similarity among users in the majority of the cases.